Posts

Crystal structure of Cas9 in complex with guide RNA and target DNA.

Nishimasu H, F Ran A, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O.  2014.  Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 156(5):935-49. Google Scholar PubMed

Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.

F Ran A, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y et al..  2013.  Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154(6):1380-9. Google Scholar PubMed

DNA targeting specificity of RNA-guided Cas9 nucleases.

Hsu PD, Scott DA, Weinstein JA, F Ran A, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O et al..  2013.  DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 31(9):827-32. Google Scholar PubMed

One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.

Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R.  2013.  One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153(4):910-8. Google Scholar PubMed

Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans.

Ashenberg O, Keating AE, Laub MT.  2013.  Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans. J Mol Biol. 425(7):1198-209. Google Scholar PubMed

RNA-guided editing of bacterial genomes using CRISPR-Cas systems.

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA.  2013.  RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 31(3):233-9. Google Scholar PubMed

Multiplex genome engineering using CRISPR/Cas systems.

Cong L, F Ran A, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al..  2013.  Multiplex genome engineering using CRISPR/Cas systems. Science. 339(6121):819-23. Google Scholar PubMed

Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers.

Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM.  2012.  Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res. 40(15):e117. Google Scholar PubMed

The microbial opsin family of optogenetic tools.

Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J et al.  2011.  The microbial opsin family of optogenetic tools. Cell. 147(7):1446-57. Google Scholar PubMed