Posts

Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.

F Ran A, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y et al..  2013.  Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154(6):1380-9. Google Scholar PubMed

Optical control of mammalian endogenous transcription and epigenetic states.

Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F.  2013.  Optical control of mammalian endogenous transcription and epigenetic states. Nature. 500(7463):472-6. Google Scholar PubMed. Google Scholar PubMed

One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.

Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R.  2013.  One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153(4):910-8. Google Scholar PubMed

Multiplex genome engineering using CRISPR/Cas systems.

Cong L, F Ran A, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al..  2013.  Multiplex genome engineering using CRISPR/Cas systems. Science. 339(6121):819-23. Google Scholar PubMed

Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy.

Lu TK, Collins JJ.  2009.  Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A. 106(12):4629-34. Google Scholar PubMed

Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli.

Moon TSeok, Yoon S-H, Lanza AM, Roy-Mayhew JD, Prather KLJones.  2009.  Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol. 75(3):589-95. Google Scholar PubMed