Mastering the biological and engineering worlds

sarpeshkar

Rahul Sarpeshkar bridges biology and engineering to advance research and applications in biotechnology, medicine, and supercomputing.

Rahul Sarpeshkar, head of the Analog Circuits and Biological Systems Group at MIT, describes himself as an “amphibian” researcher, designing biological systems in two domains — the “wet” world of DNA-protein molecular circuits in living cells, and the “dry” world of electronic circuits on supercomputing chips.

The ability to do both wet and dry work at an advanced level is not typical. Sarpeshkar, an associate professor of electrical engineering and computer science, can do it because he made a fundamental discovery that the same thermodynamic physical laws that cause electron flow in transistors also govern molecular flow in chemical reactions. “I can literally take some advanced electronic analog circuits and then map them into DNA-protein circuits, and vice versa,” he says. “It gives us a very unifying way to synthesize and analyze circuits in both the wet and the dry domains.”

Sarpeshkar’s discovery opens up possibilities for engineering cells and improving molecular sensing, processing, and synthesis for the pharmaceutical, energy, and food industries. For example, immune cells could be engineered to both detect cancer cells and kill them. And highly parallel computational modeling could be used to discover problems with cancer and diabetes genes, drug design, and cancer treatments. Supercomputing chips could be used to efficiently design biological circuits in cells.

Read more →

Watch related video