Toying with biological systems

toying-with-biological-systems-news-imageIn graduate school at the California Institute of Technology, he started to work on directed evolution of proteins — specifically, developing a computer program that would identify locations in a protein where mutations would produce a better protein. During a postdoctoral stint at the University of California at Berkeley, he became interested in synthetic biology, which was then just emerging as a new field, based on the idea that novel biological circuits could be assembled from a set of standardized parts — in this case, genes.

Bacteria don’t normally take photographs. Nor do they attack tumor cells or produce chemicals. But with some help from biological engineer Chris Voigt, they can do all that and more.

Voigt, who joined MIT’s faculty in July as an associate professor of biological engineering, likes to tinker with bacteria and other microbes to get them to perform myriad useful tasks that nature never intended — an approach known as synthetic biology.

For example, to develop their “bacterial camera,” Voigt and his students inserted a light-detecting sensor from an alga into the bacterium E. coli, coupled with a gene that causes the bacterium to make a black pigment. A sheet of these bacteria acts as the “film,” and when a stencil is laid over the film and light shone upon it, an image of the stencil forms on the sheet of bacteria.

Likewise, his tumor-targeting E. coli incorporate genes from other bacteria that detect low oxygen levels and high cell density, both conditions often found in tumors. Voigt, who had been on the faculty of the University of California at San Francisco before coming to MIT, then linked those genes with a cell circuit that triggers production of a protein called invasin that enables E. coli to invade mammalian cells.

Read more →